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Measurement of Relaxation Rates from 2D Spectra with Partial Overlap
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Heteronuclear longitudinal and transversal relaxation rates I exp
j ( t) Å I 0

j [exp(0R ac
j t) / ∑

ixj

1iexp(0R ac
i t)] . [1]

are principal sources of information on molecular dynamics
in macromolecular solutions (1–6) . They became usable

Here R ac
j is the actual value of relaxation rate at spin site j ,after the methods for proton-detected heteronuclear spectros-

and 1i is the fraction of intensity from the neighboring peakcopy were developed (7–9) . Large random errors due to
i that contributes to the intensity of peak j . For significantpoor sensitivity used to be a major obstacle that prevented
overlap and large dispersion in relaxation rates (R ac

i ! R ac
ja reliable analysis of collected data. With proton detection

or R ac
i @ R ac

j ) , the deviation from monoexponential behaviorand isotope labeling, the sensitivity has improved several
can be easily detected and possibly taken into account. How-orders of magnitude, and random errors in relaxation rates
ever, for small overlap or for close relaxation rates (R ac

i Éare reduced sometimes even below 1% (10) . Despite many
R ac

j ) , the deviation from monoexponential decay may notachievements in eliminating the other sources of errors
be noticed, and the calculated relaxation rate R fit

j may contain[cross-correlation effect (11) , antiphase contribution (12) ,
a systematic error.etc.] , the reported data may still contain systematic errors

In practice, dependence of peak intensity on delay timethat are difficult to identify and correct. This is partly due
is fitted to a monoexponential functionto the relatively complex data processing and dependence

of the results on the chosen motional model. The large num-
I exp

j ( t) É I 0
j (1 / ∑

ixj

1i )exp(0R ac
j t) . [2]ber of parameters needed to fit the experimental data to the

selected motional model can easily absorb systematic errors
which grossly distorts the calculated dynamic parameters.

For consistency, Eq. [2] is derived from Eq. [1] by settingSpectral overlap is a notorious problem in spectroscopy,
R ac

i Å R ac
j . In real systems, the relaxation rates R ac

i are spreadand much effort has been devoted to its reduction and elimi-
over a range of values, and Eq. [2] may become a poornation. In the present context, the spectral overlap is elimi-
approximation of Eq. [1] even for small 1i . Hence, the exper-nated using multidimensional techniques. However, the
imental multiexponential decay fitted to a monoexponentialoverlap might be a problem even for visually well-resolved
function yields a relaxation-rate constant R fit

j that is differentpeaks when quantitative interpretation is attempted. The tails
from the actual relaxation-rate constant R ac

j . This impliesof spectral lines may extend several linewidths away from
that vector Rfit ( that comprises all the R values from a giventhe center of the line contributing to the intensity of neigh-
sample) obtained by monoexponential fitting will be, in gen-boring lines. This effect might be enhanced by small phase
eral, different from the actual vector of relaxation rates R ac .errors which introduce far-reaching dispersive tails as well.
In the first approximation, difference between the fitted re-When a quantification of intensities with accuracy of a frac-
laxation rate R fit

j and the actual relaxation rate R ac
j is a lineartion of percent is expected (10) , spectral overlap may be-

function of spectral overlap 1i . One can easily deduce fromcome a significant source of error. Due to spectral overlap,
Eqs. [1] and [2] thatthe dependence of peak intensity I on the delay time t be-

comes multiexponential:
R fit

j 0 R ac
j Å ∑

ixj

1i (R ac
i 0 R fit

j ) . [3]
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FIG. 1. Schematic representation of the procedure for identifying and correcting the systematic errors due to spectral overlap: (a) Flowchart. (b)
Relationship between the input and the output relaxation values during iterations. First, the best experimental values Rfit are used to generate a series of
noiseless spectra. Hence, the input relaxation rates are the same as the experimental values, R in

0 Å Rfit [dotted arrow (in b)] . The relaxation-rate
calculation from vector R in

0 generates a relaxation-rate vector R out
0 . Due to the spectral overlap, R out

0 x Rfit and thus the experimental data vector Rfit is
different from the actual relaxation-rate vector. The best approximation of the actual relaxation-rate vector is that which produces an output as close as
possible to the fitted experimental data vector Rfit . Hence, the new input R in

1 is obtained by correcting the previous input R in
0 according to Eq. [7] .

Repeating the same procedure, after n iterations, a relaxation-rate vector R in
n is found with corresponding output vector R out

n á Rfit . Then, R in
n represents

the best approximation of the actual relaxation-rate vector.

rected in a single step. If they are not known, the correction in the presence of overlap, the two vectors become different,
R in 0 Rout x 0, and the input vector must be corrected. Thecan be performed iteratively.

Figure 1a shows the flowchart of an iterative procedure. main goal of the correction procedure is to find an input vector
First, a noiseless set of spectra is generated using experimen- R in

s that produces an output vector Rout
s as close as possible to

tally obtained relaxation rates Rfit , spectral linewidths, intensi- the target vector R fit
s obtained by fitting the original experimen-

ties, and positions. Repeating the same processing on the artifi- tal data. Thus, R in
s Å Rac implies that Rout

s Å Rfit . Taking a
cial spectra as on the experimental spectra, a new vector of difference of the two equations, we obtain
relaxation rates Rout is generated. When the effect of overlap R out

s 0 R in
s Å R fit 0 R ac

s [4]
is negligibly small, the difference between the input (R in Å

andRfit) and the output relaxation-rate vectors is also negligibly
small, R in 0 Rout É 0, and no correction is needed. However, R ac Å R fit / R in

s 0 R out
s . [5]
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Equation [5] cannot be directly solved since R in
s is not

known. For an arbitrary vector R in
0 , Eq. [5] generates a

corrected vector R cor ,

R cor Å R fit / R in
0 0 R out

0 , [6]

that is slightly closer to R ac than the input vector R in
0 . This

new vector is used as an input for the next iteration R in
1 Å

R cor . In general, the input for n th iteration is

R in
n Å R fit / R in

n01 0 R out
n01 . [7]

The new input vector, R in
n , is then used to generate a new

set of noiseless spectra. The repeated processing of synthetic
spectra yields a relaxation-rate vector R out

n . If the output
obtained R out

n differs appreciably from the target Rfit , the
iteration continues. Since the output vector of relaxation
rates converges toward the target vector Rfit , Fig. 1b, the
input vector converges toward an actual vector of relaxation
rates. In practice, a satisfactory convergence can be obtained
in 3–5 cycles.

To show to what extent the spectral overlap interferes
with the relaxation-rate measurements and to demonstrate
the method to eliminate systematic errors, we conducted a FIG. 2. [1H– 15N] HSQC noiseless spectrum of human ubiquitin ob-

tained by Fourier transformation of the time-domain data synthesized withseries of simulations on 15N T1 measurements in a small
1024 1 1024 data points using known chemical shifts and linewidths atglobular protein (human ubiquitin, Mw Å 8600). We have
14.1 T. Both contours are drawn at 1/5th of the maximal peak intensity.

used the relaxation-rate values from literature, obtained at The open contour (‘‘low field’’) represents the spectrum with Lorentz-to-
B0 Å 14.1 T and reported with a precision of 0.2% (10) , and Gauss transformation, exp(LB1t)exp(0GB1t 2) , with LB Å 011 Hz, GB
the chemical shifts (peak positions) from our own spectra Å 0.06 in D1 and LB Å 011 Hz, GB Å 0.05 in D2, and the filled-in

(‘‘high-field’’) contour has been obtained using a squared-cosine windowrecorded at 11 T, 297 K, and pH 4. In case of overlap, the
over 512 data points in both dimensions. The numerical values indicate thepeak positions are obtained, like in spectral assignment, from
relative errors due to spectral overlap in low field. The relevant numerical

the position of isolated cross peaks from HSQC/NOESY or values for labeled amino acids are given in Tables 1 and 2.
HSQC/TOCSY experiments.

To demonstrate how the procedure works, we have simu-
lated the influence of spectral overlap with two sets of filter- Figure 2 shows a contour plot of the synthesized [ 1H–

15N] HSQC spectrum of human ubiquitin with the aboveing functions. The first set is chosen to deliberately broaden
spectral lines, to simulate lower fields or larger (or partially introduced two sets of filtering functions used. The spec-

trum has been obtained by 2D Fourier transformation of thedenatured) protein [Lorentz-to-Gauss transformation:
exp(LB 1 t)exp(0GB 1 t 2) with LB Å 011, GB Å 0.06 time-domain data synthesized from experimental values of

chemical shifts, linewidths, and relaxation rates R fit . It wasin proton domain and LB Å 011, GB Å 0.05 in nitrogen
domain]. The second set consists of cosine squared in both processed in the same manner as the experimental spectra

( see figure legend for details ) . Although the majority ofdomains and represents the best functions for our own relax-
ation data. We will refer to those two sets as a ‘‘low field’’ lines are well resolved, there are several instances of mod-

erate and strong spectral overlap. Numbers in Fig. 2 indi-and ‘‘high field,’’ respectively. For the sake of simplicity,
the homonuclear proton couplings were neglected. Due to cate the percentile deviations between the 15N literature

R fit values and the values obtained by fitting the series ofmany differences (digital resolution, filtering functions,
chemical shift, number, and spacing of relaxation delays) low-field synthetic spectra. Peaks with deviation larger

than 1% are identified by their amino acid residues. Theirbetween simulated and original experimental data, the analy-
sis that follows does not reflect the quality of the actual values are presented in Table 1. As expected, the majority

of well-separated peaks have systematic errors less thanexperiment from Ref. (10) . However, it may well represent
the influence of overlap at higher fields in (partially) dena- 0.1%. However, peaks from a more crowded region have

errors as high as 5%; see Table 1.tured or larger proteins.
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TABLE 1
Systematic Errors of 15N Longitudinal Relaxation Rates in Human Ubiquitin at the ‘‘Low Field’’

(Rfit 0 Rout
n )/Rfit a (Rfit 0 Rin

n )/Rfit b

Res. R1 T1

no. n Å 0 n Å 1 n Å 2 n Å 3 n Å 1 n Å 2 n Å 3 (s01)c (s)c

I30 4.37% 1.42% 0.40% 0.11% 04.37% 05.80% 06.20% 2.232 0.448
L69 3.41% 1.74% 0.82% 0.37% 03.41% 05.15% 05.97% 2.165 0.462
R42 1.79% 0.97% 0.49% 0.24% 01.79% 02.76% 03.25% 2.137 0.468
V26 1.24% 0.32% 0.08% 0.02% 01.24% 01.56% 01.64% 2.222 0.450
Q49 01.77% 00.73% 00.33% 00.16% 1.77% 2.50% 2.83% 1.984 0.504
G76 02.07% 00.03% 0.00% 0.00% 2.07% 2.10% 2.10% 0.791 1.265
R74 04.92% 00.89% 00.21% 00.05% 4.92% 5.81% 6.01% 1.555 0.643
L73 05.10% 02.05% 00.87% 00.38% 5.10% 7.15% 8.02% 1.802 0.555

Meand 3.10% 1.00% 0.40% 0.17% 3.10% 4.10% 4.50% — —

Note. By strong filtering, lines are deliberately broadened to 44.1 Hz in the proton domain and 29.7 Hz in the nitrogen domain. Shown are only
residues with relative errors greater than 1%.

a Rout
0 is obtained from the spectra synthesized with Rin

0 Å Rfit; thus, the column with n Å 0 represents a systematic error due to the spectral overlap.
b The column with n Å 0 (not shown) is always zero because Rin

0 Å Rfit.
c Average values of the data from supporting information of Ref. (10); B0 Å 14.1 T at 277C.
d Mean values for reported eight amino acid residues.

Table 1 also shows the progress of iterative error correc- and output relaxation-rate vectors for low-field data. The
horizontal axis represents the relative differences betweentions, columns with n Å 0 to n Å 3. The column for n Å 0

shows the percentile deviation between the reported relax- the reported relaxation-rate vector Rfit and the output vector
R out

0 that is obtained from a series of synthetic spectra. Theation-rate values Rfit and the values R out
0 obtained from the

series of synthesized relaxation spectra using Rfit as an input. vertical axis represents the relative difference between the
vector of reported relaxation rates Rfit and the correctedThe average error for the selected set of residues is 3.1%.

After the first correction, the average error falls from 3.1 to relaxation-input-rates vector after n iterations R in
n . For n Å

1%, and in subsequent iterations, it falls to 0.4% and finally 0, the difference is zero because the original data set was
to 0.17%. The errors of the individual residues have their used initially, R in

0 Å Rfit . In the first iteration (n Å 1), all
own paths that do not depend directly on the initial error values were corrected linearly, and according to Eq. [6] , all
value. For example, after the second iteration, the error for points lie on a straight line with unit slope. For residues not
G76 falls from 2% almost to zero, whereas the error for R42 influenced by overlap, the subsequent iterations do not
after the third iteration is still 0.24% even if the initial value change the differences and every point remains on a straight
is only 1.8%. This nonlinearity demonstrates the complex line. This happens to all residues with initial differences
nature of error propagation caused by spectral overlap. It is smaller than 1% and exceptionally to G76 for which the
even more pronounced in the relative differences between initial difference is somewhat larger (2%). The residues with
the original vector Rfit and the input vector R in

n . In the course initial differences larger than 1% are driven into a nonlinear
of error correction, the input vector approaches the sought regime by subsequent iterations. Because the nonlinearity

cannot be identified in the first iteration, more than oneoriginal vector of relaxation rates, and vector R in
n represents

the best (corrected) relaxation-rate values. As is evident iteration is always needed.
The correction of relaxation rates for distortions due tofrom Table 1, the output values that need more than one

iteration (except for G76) deviate from the reported values spectral overlap is not unique. Even for a given series of
relaxation spectra, it depends on the filtering functions used.more than the input values. The average deviation of the

output values rises from initial 3.1 to 4.5% after the third Also, slightly different input sets in repeated iterations may
converge toward the same target set but yielding somewhatiteration. Again, for individual residues, these differences

vary in a broad range from 1.6% for V26 to 8% for L73. different output values. It is important to note, however, that
in most cases the linear correction of the relaxation-rate dataTherefore, for L73, the true relaxation-rate value is 8%

higher than the uncorrected one. set may be sufficient.
For assessment of real high-field experimental data, moreFigure 3 provides a better insight into the relationship

between the input and the output relaxation-rate values. It relevant is the analysis with optimal filtering functions. With
optimal filtering, the overlap is less pronounced but stillshows the correlation between the relative difference of input
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FIG. 3. Correlation among the relative differences between the input and the output relaxation-rate sets in low field. The horizontal axis shows the
difference between the fitted experimental data Rfit and the data obtained from synthetic noiseless spectra. The vertical axis shows the difference between
the original and corrected data sets: for n Å 0, there is no difference since Rfit Å R in

0 ; for n Å 1, all points are on a straight line with slope 01 since a
linear correction was applied. The subsequent linear corrections (n Å 2, 3) do not affect points with small deviations, but for the larger deviations,
introduce a nonlinearity in the correction.

present. Table 2 shows the analysis of the same eight resi- critically depends on the choice of filtering function and the
number and spread of relaxation delay increments, resultsdues from human ubiquitin with overlap simulated at high

field. Due to better peak separation, the maximal systematic from Table 2 do not apply to the experimental relaxation
rates in (10) as the processing parameters of the experimen-error caused by overlap is only 0.9%. However, this small

systematic error must be taken into account if an accuracy tal data are not reported. Table 2, however, provides good
insight into the magnitude of overlap errors. Even at highon the order of 1% is required. Since the actual overlap error
fields and optimal filtering, systematic errors for some lines
may be on the order of 1% and can easily be corrected in a
single iteration.TABLE 2

We believe that the proposed procedure is importantSystematic Errors of 15N Longitudinal Relaxation Rates
in Human Ubiquitin at the ‘‘High Field’’ for assessing the quality of relaxation-rate data because it

can identify and correct systematic errors due to weak
(Rfit 0 Rout

n )/Rfit a (Rfit 0 Rin
n )/Rfit b

spectral overlap. As demonstrated here, when using low
Res.

fields or in large macromolecules, these errors can farno. n Å 0 n Å 1 n Å 2 n Å 1 n Å 2
exceed random errors. Sometimes they may be easy to

I30 0.86% 0.05% 0 00.86% 00.91% correct by careful optimization of filtering functions. In
L69 0.44% 0.03% 0 00.44% 00.47% that case, the proposed procedure (with no iterations ) may
R42 0.37% 0.04% 0 00.37% 00.41% be used to assess the selected filters. A good filter mini-
V26 0.24% 0.02% 0 00.24% 00.25%

mizes the difference R in 0 R out .Q49 00.40% 00.03% 0 0.40% 0.43%
The proposed method to check and correct the systematicG76 00.35% 00.01% 0 0.35% 0.36%

R74 00.88% 00.03% 0 0.88% 0.91% errors is not limited to relaxation-rate measurements but can
L73 00.88% 00.05% 0 0.88% 0.93% be applied to any measurement where the information is

extracted from peak intensities or peak volumes. For exam-Meanc 0.55% 0.03% 0 0.55% 0.58%
ple, it can be equally well applied when measuring coupling

Note. Linewidths are 21.8 and 15.7 Hz in the proton and nitrogen domain, constants (13) or chemical-shift anisotropy (14) as both are
respectively. Shown are the same residues as in Table 1. based on the analysis of peak intensities from corresponding

a Rout
0 is obtained from the spectra synthesized with Rin

0 Å Rfit; thus, the
two-dimensional spectra. The method might be especiallycolumn with n Å 0 represents a systematic error due to the spectral overlap.
important in the study of large or partially denatured proteinsb The column with n Å 0 (not shown) is always zero because Rin

0 Å Rfit.
c Mean values for reported eight amino acid residues. where the spectral overlap is particularly strong.
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